حل عددی برخی مسائل سهموی معکوس با پارامترهای مجهول

thesis
abstract

در این رساله یک مسأله سهموی معکوس به منظور تعیین هم زمان توابع مجهول p(t)، q(t) و u(x,t) را در نظر می گیریم به طوری که در معادله ی: u_t=u_xx+q(t) u_x+p(t)u+f(x,t); x?(0,1), t?(0,t], (1) با شرایط اولیه-کرانه ای u(x,t)=?(x); x?[0,1], (2) u(0,t)=g_1 (t); t?(0,t] (3) u(1,t)=g_2 (t); t?(0,t] (4) و همراه با شرایط فوق اضافی: u(x^*,t)=e_1 (t), u(x^(**),t)=e_2 (t); x^*,? x?^(**)?(0,1), t?(0,t], (5) صدق نماید که در آن، f(x,t) ?(x)، g_1 (t)، g_2 (t) ،e_1 (t)?0 و e_2 (t)?0 توابع معلوم می باشد و اعدادt ،x^* و ? x?^(**) ثابت های مثبت و معلوم هستند. هرگاه u بیانگر غلظت باشد، معادله (1) انتقال، انتشار و واپاشی یک حلال شیمیایی (یک ردیاب) با غلظت u متحرک در یک محیط متخلخل (یک سفره)، را مدلسازی می کند که در آن q(t) سرعت متوسط (سرعت رانندگی) و p(t)اندازه واپاشی را نشان می دهد. هرگاه u درجه حرارت باشد مسأله (5) - (1) می تواند به عنوان یک مسأله کنترل، به منظور یافتن پارامترهای کنترلی p=p(t)وq=q(t) در نظر گرفته شود به قسمی که در شرایط فوق اضافی (5) صدق نماید. روش ارائه شده در این رساله، فرموله کردن (5) - (1) با استراتژی دیگری می باشد ابتدا مجهول q(t) را به صورت تکه ای ثابت، تقریب می زنیم و بر روی هر بازه ی زمانی که تابع ثابت است، به وسیله ی برخی تبدیلات، مسأله به یک مسأله سهموی ناموضعی مقدار اولیه-کرانه ای تبدیل می شود. در انتها با استفاده از روش تفاضل متناهی به حل عددی مسأله حاصل می پردازیم.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

حل برخی مسائل معکوس سهموی به روش تجزیه آدومیان

در این مقاله سه نوع از مسائل معکوس سهموی از نوع هدایت گرمایی و تشعشع گرمایی به روش تجزیه آدومیان بررسی می شود و برای حل این نوع مسائل معکوس از یک شرط فوق ¬اضافی در یک نقطه داخلی ناحیه مفروض مسأله استفاده می شود. این روش با سرعت همگرایی بالا، تقریب عددی از جواب دقیق مسأله بدون نیاز به خطی¬سازی یا گسسته سازی می¬دهد. در واقع روش تجزیه آدومیان، نیاز به حل کردن هر سیستم خطی یا غیرخطی از معادلات جبری...

full text

حل برخی مسائل معکوس سهموی از نوع کران متحرک و‎منبع گرمایی مجهول به کمک روش مولیفیکیشن

در این پایان نامه برخی مسائل معکوس در معادلات دیفرانسیل با مشتقات جزئی سهموی از جمله مسائل معکوس انتقال گرما با منبع گرمایی مجهول و مساله معکوس کران متحرک مربوط به معادله انتقال گرما در فضای یک بعدی به کمک روش مولیفیکیشن و مارچینگ مورد برسی قرار می گیرند. برای حل این مسائل به دلیل بدوضع بودن آنها از یک روند منظم سازی بر اساس روش مولیفیکیشن و نیز روش مارچینگ برای به دست آوردن یک جواب عددی پایدار...

روشهای عددی برای حل مسائل معکوس سهموی

در این پایان نامه روش عددی برای حل مساله ی معکوس سهمی گون خطی و غیر خطی یک بعدی را بررسی می کنیم. تقریب گسسته این مساله بر پایه ی تفاضلات متناهی بنا شده است. این تکنیک ها برای مشخص کردن پارامتر کنترل که در هر زمان دلخواه درجه حرارت مطلوب را در نقطه ی داده شده، در یک بازه ی زمانی معین مشخص می کند. جواب عددی ابتدا برای مساله معکوس خطی با استفاده از تفاضلات متناهی بدست می آوریم، سپس یک مسئله معکوس...

15 صفحه اول

حل عددی برخی مسائل مستقیم و معکوس هدایت گرمایی دوبعدی به کمک روش جواب بنیادی

ددر این مقاله یک روش عددی برپایه روش جواب بنیادی برای حل برخی مسائل مستقیم و معکوس هدایت گرمایی دوبعدی به کار گرفته می‌شود. براساس جواب بنیادی معادله گرما و خواص نظری جوابهای بنیادی شامل استقلال خطی و چگال بودن، با جایگذاری مناسب نقاط منبعی، روش جواب بنیادی برای حل برخی مسائل هدایت گرمایی دوبعدی معرفی می‌شود. سیستم خطی بدست آمده از روش فوق برای مسائل مستقیم و معکوس، یک سیستم خطی بد حالت بوده و ...

full text

تقریب های تفاضلات متناهی برای حل عددی مسائل معکوس سهموی

هدف این پژوهش، به دست آوردن طرح های تفاضلات متناهی با مرتبه دقت بالا برای معادله دیفرانسیل جزئی معکوس سهموی است. با حل کردن چنین معادله ای پارامتر کنترل مجهول را به دست می آوریم. به همین منظور طرح های تفاضلات متناهی صریح، ضمنی، کرانک-نیکلسون و کراندال را در نظر گرفته و مرتبه دقت و ناحیه پایداری آن ها را مورد بررسی قرار می دهیم. در ادامه با استفاده از تابع تبدیل معادله دیفرانسیل جزئی را تغییر دا...

15 صفحه اول

روش اسپلاین برای حل برخی مسائل معکوس سهموی

?? انی ?? ،برق،م ?? ،ریاض ?? از جمله فیزی ?? معادلات با مشتقات جزیی در بسیاری از شاخه های علوم و مهندس این پدیده از روش های عددی ?? وجود ندارد و به ناچار جهت بررس ?? آن ها حل تحلیل ?? شود که برای بررس ?? مطرح م را که ?? شود. روش های عددی بسیاری برای این مسایل وجود دارد که دارای دقت های متفاوت هستند. روش ?? استفاده م از روش های موجود خطای کمتری داشته و به دلیل استفاده از نقاط کمتر، تقریب بهتر...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023